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Abstract

This article explains the confinement of the ion in the first stability region of the three-dimensional radio frequency
quadrupole ion trap using a periodic impulsional potential of the formV0 cosVt/(1 2 k cos 2Vt) with 0 # k , 1. Numerical
computations have been used to study the different aspects of impulsional potential whenk 5 0.8, andcompared with a
sinusoidal potentialk 5 0 for some value of equivalent points: two operating points located in their corresponding stability
diagram having the somebz. (Int J Mass Spectrom 188 (1999) 177–182) © 1999 Elsevier Science B.V.
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1. Introduction

The confinement of ions in rf quadrupole fields in
two or three dimensions as in the mass filter or the
quadrupole rf ion trap, which is commonly named the
QUISTOR (Quadrupole Ion STORage), are well-
known processes [1–4]. The utilization of the con-
fined ions in many experiments involving collisions is
required to know the initial kinetic energy of the
reactants. This situation is particularly so when using
a rf ion trap as a dynamic ion–molecule reactions
chamber [5–7].

The impulsional voltage given by

V~t! 5
V0 cosVt

1 2 k cos 2Vt
(1)

whereV/2p is the frequency of the rf field and with
0 # k , 1, has an advantage over the classical

sinusoidal potential for the ion trap operation. It
provides periodic large zero voltage temporal zones
where one can inject ions or electrons of well defined
initial energy inside the trap for collisional studies,
their energy remains unchanged and can be known
with accuracy and subsequently adjusted. Fig. 1
shows the Fourier series of voltage 1 involving
variousk values.

A complete description of the theoretical analyses
and its experimental study of periodic impulsional
potential 1 is given in [8,9]. It has been found that
values ofk in the range 0.8–0.9 are a good compro-
mise between an easy simulation of the ion trap and
the existence of zero potential zones. The subject of
this study is directed to a general survey of the ion
trap supplied with potential 1 for variousk values, in
particular, the comparison between periodic impul-
sional voltagek 5 0.8 and the sinusoidal voltage
k 5 0 (classical trap).
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2. Theory

By using mode III as described by Bonner [10], a
negative dc voltage (2U) for endcap electrodes and
voltage given by Eq. (1) for the ring electrode are
shown in Fig. 2. For an ion of massm and chargee,
the basic equation of ion motion is described by Hill’s
differential equation [11–14] and is given by

2u~j!

j2 1 Fau 2 2I u

cos~2j!

1 2 k cos~4j!Gu~j! 5 0 (2)

in whichu is one of the directionr or z and 2j 5 Vt.
The stability parametersaz andI z, for thez direction
can be written as

az 5
24eU

mz0
2V2 5 22ar

Iz 5
2eVmax~1 2 k!

mz0
2V2 5 22I r

where z0 is one-half the shortest separation of the
endcap electrodes,r0

2 5 2z0
2 is the square of the ring

electrode diameter andV0 5 (1 2 k)Vmax. Note
when k 5 0, the ion motions is described by the
Mathieu differential equations. However, the stability
parameterqz of Mathieu differs by the factor of (12
k) with respect toI z of impulsional case, but the
stability parameteraz always stays the same for both
sinusoidal and impulsional voltages.

Numerical solution of the Eq. (2) is obtained by
employing matrix techniques [15,16]. For the ion
motion stability in the fundamental periodj 5 p

and in the absence of space charge density, ion–ion
or ion–neutral collisions in thez direction are given
by

Fz~j0 1 p!

ż~j0 1 p!
G 5 F cos~bzp! 1 az~j0 1 p! sin ~bzp! sz~j0 1 p! sin~bzp!

2gz~j0 1 p! sin ~bzp! cos~bzp! 2 az~j0 1 p! sin ~bzp! GFz~j0!

ż~j0!
G

wherej0 represents the initial phase of the rf voltage.
The termbz describes the nature of the ion oscillation

bz 5
1

p
arccosSUm11 1 m22

2
UD

with

m11 5 cos~bzp! 1 az~j0 1 p! sin ~bzp!

m22 5 cos~bzp! 2 az~j0 1 p! sin ~bzp!

and the relationship betweenbz and the fundamental
ion motion (or Secular) frequencyvz, is given by

bz 5
2vz

V
.

3. Results

3.1. Stability regions

Fig. 3 shows the first stability regions in the plane
(az, I z) for various values ofk. In each case the
corresponding voltages formed are also presented.

Fig. 2. Electronics configuration.

Fig. 1. Fourier series components of the impulsional potential for
various values ofk.
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These principal stability diagrams have been found by
comparing the trace value of the state transition
matrix with the number two, i.e.um11 1 m22u # 2 for
a given values of the stability parametersaz and I z.

One can note that theaz values of the apexes of the
these stability diagrams do not change, but the values
of I z decrease whenk increases. The extreme limits of
the parameterI z versusk and withaz 5 0 is shown in
Fig. 4.

It is interesting to see how the stability parameters
I z varies with bz for different values ofk. Fig. 5
shows the computed results withbz in the range of
0–1 and withaz 5 0. The linear part of these curves,
which follow a simple relationship betweenaz 5 0
and I z, is called an adiabatic region as in the case of
sinusoidal voltage (k 5 0) the expressionbz 5

(=2/ 2)qz has been utilized with the conditionsaz '
0 andqz 5 I z # 0.4. Forexample, the approximated
relation in this region for the impulsional voltage
(k 5 0.8) hasbeen found to bebz 5 1.8I z.

3.2. Ion trajectories

For the purposes of comparison of ion trajectories
in two different stability diagrams, the equivalent
points have been defined as the operating points
which have the same value ofbz. Indeed, these points
are associated with the same ion oscillation (secular)
frequenciesvz. Fig. 6 shows the computedvz fre-
quencies versusk for three equivalent operating
points bz 5 0.2, 0.4, and 0.6when az 5 0 and
V/2p 5 1 MHz.

Fig. 3. The first stability diagrams for differentk values. In each
case the normalized potentials form.

Fig. 4. Extreme limitsI zlim of the stability diagrams of the Fig. 3 as
a function ofk for ax 5 0. k 5 0, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9,
0.97, 0.99, andI zlim 5 0.909, 0.9, 0.75, 0.63, 0.46, 0.37, 0.24,
0.12, 0.065, respectively.

Fig. 5. Stability parameterI z plotted againstbz for different k
values.

Fig. 6. Variations of secular frequency,vz as a function ofk,
V/ 2p 5 1 MHz andax 5 0.
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Ion displacements were examined and displayed
both in real time and in the phase space for some
characteristic equivalent operating points within two
stability diagrams,k 5 0 andk 5 0.8. Theequiva-
lent points along theI z axis wherebz 5 0.18, 0.38,
0.705, and0.959. These points are situated, from left
to the right limits of the stability regions and are
shown in Fig. 7.

The ion trajectories in the phase space representa-
tions are shown in Fig. 8 for two of the ion motions
given in Fig. 7. The trajectory points on thez(j) and
ż(j) coordinates lie on or inside the ellipse, the
equation of which depends upon the rf field initial
phasej0. The ellipse equation is given by

gz~j0 1 p! z2~j0! 1 2az~j0 1 p! z~j! ż~j0!

1 az~j0p! ż2~j0! 5 sz
2

wherepsz
2 is the area of the ellipse. The maximum

displacement and velocities for a given initial rf field
initial phasej0 then can be expressed as

Zmax~j0! 5 sz@smax~j0 1 p!#1/2

Żmax~j0! 5 sz@gz max~j0 1 p!#1/2

Fig. 9 shows the evolution of the coefficientsgz, az,
andsz with j0 for the equivalent operating pointbz 5
0.380 andwith k 5 0, k 5 0.8 andaz 5 0.

3.3. Ion energy

The kinetic energy of the confined ion can be
calculated using either pseudopotential well model
[17–21], valid only in the adiabatic region of the
stability diagrams or phase space dynamic model
[22–26] applied in all stability regions. When a
pseudopotential well model is considered the equiva-
lent operating points correspond to the same pseudo-

Fig. 7. The ions’ displacements as a function of timej 5 Vt/ 2 for
the same four operating points in two stability diagramsk 5 0 and
k 5 0.8. Thepoints are as follows: (a)bz 5 0.18, k 5 0, qz 5
0.2539 andk 5 0.8, I z 5 0.1; (b) bz . 0.380, k 5 0, qz 5
0.508 andk 5 0.8, I z 5 0.2; (c)bz 5 0.705,k 5 0, qz 5 0.8
and k 5 0.8, I z 5 0.313; (d)bz 5 0.959, k 5 0, qz 5 0.906
and k 5 0.8, I z 5 0.355. Theinitial phasej0 5 0, z(j0) 5 1,
ẑ(j0) 5 0, and 25 fundamental periodsj. Fig. 8. Family of phase-space ellipses describing motion in thez

direction for the same two operating points (b) and (d) as in Fig. 7
and for different phase angle of the drive potential applied to the
ring electrode. Note each ellipse has been scaled tor 5 ( zmax

2 1
żmax

2 )1/2.
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potential well depth, according to the following rela-
tions:

Dz 5
eVmax

2

4mz0
2V2

with k 5 0, or

Dz 5
~1.8!2eVmax

2

50mz0
2V2

with k 5 0.8. Themean total and maximum kinetic
energies of the ion in this case can be written

ET 5
8eDz

p2

Emax5
p2

4
ET

Taking a typical quadrupole ion trap withz0 5 1 cm,
the computed well depth, the total and maximum
kinetic energies of the confined Xe1 ion for the
quivalent operating pointbz 5 0.233 are asfollows:

Dz 5 0.925 ~V!

ET 5 0.75 ~eV!

Emax5 1.851 ~eV!

4. Discussions and conclusions

This computational investigation, using periodic
impulsional voltage, having a narrow frequency spec-
trum for the quadrupole ion trap, suggest that mechan-
ical properties of the confined ions are identical in two
different first stability regions, i.e.k 5 0 and k 5
0.8, provided that the operating points have the same
value ofbz.

The form of periodic impulsional voltage pre-
sented in this article merits consideration as it allow
existence of zero potential zones of sufficient width
for collisional studies, i.e. injection of ions or elec-
trons in the ion trap without a modification of their
energies. In addition, this impulsional voltage can
substantially reduce the size of the first region of the
Mathieu stability diagram. The reduction is in theI z

values as the parameterk is increased from zero, but
the stability parameteraz stays unchanged. The re-
duction in the (az, I z) space corresponds to an
enlargement of the stability region in the (U, Vmax)
plane in Fig. 10.

However, for high values ofk, the innate narrow
stability region might have special application in the
field of mass selections techniques as narrowing of the
stability diagram provides rapid transition of stable to
unstable ion motion as the stability parameterI z is
varied. More precisely, when the stability region is
narrow, higher resolution expected in a short periods
of rf impulsional voltage. Investigations are continu-
ing to clarify this last statement.

Fig. 9. Variations ofaz(j0 1 p), sz(j0 1 p) andgz(j0 1 p) as
a function of the initial phasej0 for the same operating point,bz 5
0.380, (a)k 5 0.8, (b)k 5 0.

Fig. 10. Comparison of theoretical stability diagrams in the (U, V)
space of Xe1 ion V/2 5 1/11 MHz,z0 5 1 cm. (a)k 5 0.8, (b)
k 5 0.
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