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Abstract

This article explains the confinement of the ion in the first stability region of the three-dimensional radio frequency

quadrupole ion trap using a periodic impulsional potential of the fdgmosQt/(1 — k cos A)t) with 0 = k < 1. Numerical
computations have been used to study the different aspects of impulsional potentiak whén8, andcompared with a
sinusoidal potentiak = 0 for some value of equivalent points: two operating points located in their corresponding stability
diagram having the somg,. (Int J Mass Spectrom 188 (1999) 177-182) © 1999 Elsevier Science B.V.
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1. Introduction

The confinement of ions in rf quadrupole fields in
two or three dimensions as in the mass filter or the
quadrupole rf ion trap, which is commonly named the
QUISTOR (Quadrupole lon STORage), are well-
known processes [1-4]. The utilization of the con-
fined ions in many experiments involving collisions is
required to know the initial kinetic energy of the
reactants. This situation is particularly so when using
a rf ion trap as a dynamic ion—molecule reactions
chamber [5-7].

The impulsional voltage given by

V, cosQt

vy = 1 — kcos 20t

(1)

whereQ/24 is the frequency of the rf field and with
0 = k < 1, has an advantage over the classical

sinusoidal potential for the ion trap operation. It
provides periodic large zero voltage temporal zones
where one can inject ions or electrons of well defined
initial energy inside the trap for collisional studies,
their energy remains unchanged and can be known
with accuracy and subsequently adjusted. Fig. 1
shows the Fourier series of voltage 1 involving
variousk values.

A complete description of the theoretical analyses
and its experimental study of periodic impulsional
potential 1 is given in [8,9]. It has been found that
values ofk in the range 0.8—0.9 are a good compro-
mise between an easy simulation of the ion trap and
the existence of zero potential zones. The subject of
this study is directed to a general survey of the ion
trap supplied with potential 1 for variolksvalues, in
particular, the comparison between periodic impul-
sional voltagek = 0.8 and the sinusoidal voltage
k = 0 (classical trap).
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Fig. 1. Fourier series components of the impulsional potential for
various values ok.

2. Theory

By using mode IIl as described by Bonner [10], a
negative dc voltage-{U) for endcap electrodes and
voltage given by Eq. (1) for the ring electrode are
shown in Fig. 2. For an ion of mass and chargee,
the basic equation of ion motion is described by Hill's
differential equation [11-14] and is given by

9u(§)
9&2

cos(2¢)
Y1 — k cos(4¢)

a, — 2l ué =0 (2

in whichu is one of the directiom orzand Z = Qit.
The stability parametera, andl,, for thez direction
can be written as

—4eU
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Vg cos (Qt)
1-kcos(2Qt)

Fig. 2. Electronics configuration.

 26Vipadl - k)
2= mzaz ~ 2

where z, is one-half the shortest separation of the
endcap electrodes; = 273 is the square of the ring
electrode diameter and/; = (1 — K)V,,a Note
when k = 0, the ion motions is described by the
Mathieu differential equations. However, the stability
parameter, of Mathieu differs by the factor of (+

k) with respect tol, of impulsional case, but the
stability parametea, always stays the same for both
sinusoidal and impulsional voltages.

Numerical solution of the Eq. (2) is obtained by
employing matrix techniques [15,16]. For the ion
motion stability in the fundamental periogl= =
and in the absence of space charge density, ion—ion
or ion—neutral collisions in thedirection are given

%" mzaz~ % by

2(&o + ) _ | cos(B,m) + a& + m) sin(B,m) o (& + ) sin(B,m) 2(&)

2(&, + ) —YA& + ™) sin (B,m) cos(B,m) — a&o+ m) sin(B,m) || z(&)
where&, represents the initial phase of the rf voltage. 20,
The termp, describes the nature of the ion oscillation B.= Kol

_ 1 m;q + Myy
B,= ; arccos( ’f )
3. Results

with
mll: COS(BZW) + az(fo + 77) Sin (Bzﬂ-)
m22 = COS(BZW) - az(go + 77) sin (Bzﬂ-)

and the relationship betweg8), and the fundamental
ion motion (or Secular) frequenay,, is given by

3.1. Stability regions

Fig. 3 shows the first stability regions in the plane
(a,, |, for various values ok. In each case the
corresponding voltages formed are also presented.
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Fig. 3. The first stability diagrams for differektvalues. In each
case the normalized potentials form. (V2/2)q, has been utilized with the conditioas ~
0 andqg, = |, = 0.4. Forexample, the approximated

These principal stability diagrams have been found by relation in this region for the impulsional voltage
comparing the trace value of the state transition (k = 0.8) hasbeen found to bgg, = 1.8l,.
matrix with the number two, i.ém;; + m,,| = 2 for
a given values of the stability parametersand| . 3.2. lon trajectories

One can note that theg, values of the apexes of the
these stability diagrams do not change, but the values  For the purposes of comparison of ion trajectories
of I, decrease whekiincreases. The extreme limits of i two different stability diagrams, the equivalent
the parametelr, versusk and witha, = 0 is shownin  points have been defined as the operating points
Fig. 4. which have the same value Bf. Indeed, these points

Itis interesting to see how the stability parameters are associated with the same ion oscillation (secular)
|Z varies with Bz for different values ofk. Flg 5 frequencies(,)z_ F|g 6 shows the Computedz fre-

shows the computed results wiBy in the range of  quencies versuk for three equivalent operating
0-1and witha, = 0. The linear part of these curves, points g, = 0.2, 0.4, and 0.6when a, = 0 and

which follow a simple relationship betweeny = 0 Q27 = 1 MHz.
andl,, is called an adiabatic region as in the case of

sinusoidal voltage K = 0) the expressiong, =
w, (kH2)
|
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Fig. 4. Extreme limitd ;;,, of the stability diagrams of the Fig. 3 as 2 4 6 8 | keip”!

a function ofk for a, = 0. k = 0, 0.1, 0.3, 0.5, 0.7, 0.8, 0.9,
0.97, 0.99, and,, = 0.909, 0.9, 0.75, 0.63, 0.46, 0.37, 0.24, Fig. 6. Variations of secular frequency, as a function ofk,
0.12, 0.065, respectively. Q/27 = 1 MHz anda, = 0.
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Fig. 7. The ions’ displacements as a function of titne Qt/2 for
the same four operating points in two stability diagrdms 0 and
k = 0.8. Thepoints are as follows: (g3, = 0.18,k = 0, q, =
0.2539 andk = 0.8,1,=0.1; (b)B, = 0.380,k =0, q, =
0.508 ank = 0.8,1, = 0.2; (c)B, = 0.705,k = 0,q, = 0.8
andk = 0.8,1, = 0.313; (d)B, = 0.959,k = 0, g, = 0.906
andk = 0.8, 1, = 0.355. Theinitial phase&, = 0, z(¢,) = 1,
2(&,) = 0, and 25 fundamental periods
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Fig. 8. Family of phase-space ellipses describing motion inzthe
direction for the same two operating points (b) and (d) as in Fig. 7
and for different phase angle of the drive potential applied to the

lon displacements were examined and displayed ring electrode. Note each ellipse has been scaled=0(z,., +
. . . 52 1/2
both in real time and in the phase space for some Zmad" -

characteristic equivalent operating points within two

stability diagramsk = 0 andk = 0.8. Theequiva-
lent points along thé, axis whereB, = 0.18, 0.38,

0.705, and.959. These points are situated, from left 7 (€0 = S Vymal o +

to the right limits of the stability regions and are
shown in Fig. 7.

Zmaxéo) = Sz[o'max(%‘o + 77)]1/2

]1/2

Fig. 9 shows the evolution of the coefficients «,,

The ion trajectories in the phase space representa-ando, with &, for the equivalent operating poipt, =

tions are shown in Fig. 8 for two of the ion motions
given in Fig. 7. The trajectory points on tlzé£) and
z(¢) coordinates lie on or inside the ellipse, the
equation of which depends upon the rf field initial
phaseé,. The ellipse equation is given by

YAép + m) Zz(fo) + 2a (& + m) 2(€) 2(&o)
+ a(éym) 22(50) = 53

where 7rs? is the area of the ellipse. The maximum
displacement and velocities for a given initial rf field
initial phase&, then can be expressed as

0.380 andwith k = 0, k = 0.8 anda, = O.

3.3. lon energy

The kinetic energy of the confined ion can be
calculated using either pseudopotential well model
[17-21], valid only in the adiabatic region of the
stability diagrams or phase space dynamic model
[22-26] applied in all stability regions. When a
pseudopotential well model is considered the equiva-
lent operating points correspond to the same pseudo-
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Fig. 9. Variations ofx (&, + ), 0,(&, + ) andy,(§, + m) as
a function of the initial phasé, for the same operating poir, =
0.380, (a)k = 0.8, (b)k = 0.

potential well depth, according to the following rela-
tions:

D _ evzmax
2 4mZ0?
with k = 0, or

_(1.9% V5,
* 50mz0°

with k = 0.8. Themean total and maximum kinetic
energies of the ion in this case can be written

8eD,
T 2
772
Emax = Z ET

Taking a typical quadrupole ion trap wiy = 1 cm,
the computed well depth, the total and maximum
kinetic energies of the confined Xeion for the
quivalent operating poing, = 0.233 are a$ollows:

D,=0.925 (V)
E-=0.75 (eV)
1.851 (eV)

Emax=

181
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Fig. 10. Comparison of theoretical stability diagrams in tbe Y)
space of Xet+ ion }/2 = 1/11 MHz,z, = 1 cm. (a)k = 0.8, (b)
k = 0.

4. Discussions and conclusions

This computational investigation, using periodic
impulsional voltage, having a narrow frequency spec-
trum for the quadrupole ion trap, suggest that mechan-
ical properties of the confined ions are identical in two
different first stability regions, i.ek = 0 andk =
0.8, provided that the operating points have the same
value of 3,.

The form of periodic impulsional voltage pre-
sented in this article merits consideration as it allow
existence of zero potential zones of sufficient width
for collisional studies, i.e. injection of ions or elec-
trons in the ion trap without a modification of their
energies. In addition, this impulsional voltage can
substantially reduce the size of the first region of the
Mathieu stability diagram. The reduction is in the
values as the parametkiis increased from zero, but
the stability parametea, stays unchanged. The re-
duction in the &,, |,) space corresponds to an
enlargement of the stability region in th&( V.,
plane in Fig. 10.

However, for high values ok, the innate narrow
stability region might have special application in the
field of mass selections techniques as narrowing of the
stability diagram provides rapid transition of stable to
unstable ion motion as the stability parameters
varied. More precisely, when the stability region is
narrow, higher resolution expected in a short periods
of rf impulsional voltage. Investigations are continu-
ing to clarify this last statement.
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